Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.

نویسندگان

  • Sureshkumar Kalyanam
  • Rebecca D Yapp
  • Michael F Insana
چکیده

Ultrasonic elasticity imaging enables visualization of soft tissue deformation for medical diagnosis. Our aim is to understand the role of flow-dependent and flow-independent viscoelastic mechanisms in the response of biphasic polymeric media, including biological tissues and hydrogels, to low-frequency forces. Combining the results of confined and unconfined compression experiments on gelatin hydrogels with finite element analysis (FEA) simulations of the experiments, we explore the role of polymer structure, loading, and boundary conditions in generating contrast for viscoelastic features. Feature estimation is based on comparisons between the biphasic poro-elastic and biphasic poro-viscoelastic (BPVE) material models, where the latter adds the viscoelastic response of the solid polymer matrix. The approach is to develop a consistent FEA material model (BPVE) from confined compression-stress relaxation measurements to extract the strain dependent hydraulic permeability variation and cone-plate rheometer measurements to obtain the flow-independent viscoelastic constants for the solid-matrix phase. The model is then applied to simulate the unconfined compression experiment to explore the mechanics of hydropolymers under conditions of quasi-static elasticity imaging. The spatiotemporal distributions of fluid and solid-matrix behavior within the hydrogel are studied to propose explanations for strain patterns that arise during the elasticity imaging of heterogeneous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasticity imaging of polymeric media.

Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydr...

متن کامل

Preparation and Mechanical Properties of Photo-Crosslinked Fish Gelatin/Imogolite Nanofiber Composite Hydrogel

Fish gelatin (FG) extracted from sea bream scales was reacted with glycidyl methacrylate (GMA), and the product (FG-GMA) was used for photopolymerization using a radical photoinitiator in the presence or absence of imogolite nanofibers in the aqueous solution. The synthesis of FG-GMA was confirmed by H NMR spectroscopy, and photopolymerization of FG-GMA was achieved successfully by irradiation ...

متن کامل

Molecular and Structural Analysis of Viscoelastic Properties

Elasticity imaging is emerging as an important tool for breast cancer detection and monitoring of treatment. Viscoelastic contrast in lesions is generated by disease specific processes that modify the molecular structure of connective tissues. We showed previously that gelatin hydrogels exhibit mechanical behavior similar to native collagen found in breast tissue and therefore are suitable as p...

متن کامل

Viscoelastic Properties of Polyacrylamide Nanocomposite Hydrogels Prepared in Electrolyte Media: Effect of Gelant Volume

In this work, nanocomposite (NC) hydrogels based on polyacrylamide/chromium triacetate were prepared at different reaction mixture (gelant) volumes and their crosslinking process and viscoelastic behaviors were studied. The X-ray diffraction (XRD) patterns taken from the NC hydrogels containing laponite nanoparticles did not show any distinct characteristic basal reflection for all of the NC hy...

متن کامل

Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method

Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 131 8  شماره 

صفحات  -

تاریخ انتشار 2009